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ABSTRACT 

 

We investigated the variability of the aerosol scattering (σsp; 1974–2015) and absorption (σap; 2000–2015) coefficients at the 

Mauna Loa Observatory using surface in situ measurements. Although σsp decreased during the morning (1.85 ± 3.43 Mm–1 

at 550 nm, 8–11 local standard time [LST]), it increased during the afternoon (3.72 ± 7.63 Mm–1 at 550 nm, 14–17 LST) due 

to the development of thermally induced boundary layer winds. No distinct diurnal variation was observed in σap. The 

obvious increase in σsp and σap during the spring under free troposphere conditions (8–11 LST) is attributed to long-range-

transported aerosols from Asia, especially dust and pollution aerosols from Northeast Asia and biomass burning aerosols 

from Southeast Asia. Accordingly, σsp increased from 1974 till 2015 (at 1.89% year–1), whereas no significant trend was 

noted for either σsp or σap from 2000 till 2015. An increasing trend for σsp prevailed in air masses originating in Northeast 

Asia (+0.51 Mm–1 decade–1). 
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INTRODUCTION 

 

Optical and radiative properties of atmospheric aerosols 

depend on their chemical compositions, shapes, and particle 

size distributions (Haywood and Ramaswamy, 1998; Delene 

and Ogren, 2002; Jacobson, 2002). These properties exhibit 

high spatial and temporal variations because of the relatively 

short lifetime and uneven geographical distribution related 

to emissions, chemical processes in the atmosphere, and 

weather patterns (Delene and Ogren, 2002; Andrews et al., 

2011; Boucher et al., 2013; Collaud Coen et al., 2013; Park 

et al., 2019). Even though the space-based and ground-based 

remote sensing measurements allow the quantification of 

aerosol optical properties (AOPs) at increased spatio-

temporal resolutions, they still have limitations retrieving 

sufficiently accurate AOPs other than the aerosol optical 

depth (AOD). Surface in situ measurements of AOPs play a 

crucial role (Hansen et al., 1995) in the reduction of the 

uncertainty by providing essential information in a more 

direct way (Andrews et al., 2011; Park et al., 2019).  

Continuous, long-term measurements of aerosols, especially 

in the free troposphere (FT), are needed to understand their 

long-range transport, trends, and global or regional climate  
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effects (Laj et al., 2009). Aerosols in the FT are spatially 

more representative than observations within the boundary 

layer because the lifetime of atmospheric aerosols lifted into 

the FT can be extended up to several weeks (Kent et al., 

1998), and they can travel much faster and further due to the 

strong prevailing winds (McKendry et al., 2001; Wandinger 

et al., 2002; Liu et al., 2003; Mattis et al., 2008; Uno et al., 

2009).  

Measurements of AOPs at the Mauna Loa Observatory 

(MLO; 19.54°N, 155.58°W, 3397 m above mean sea level) 

were conducted by the National Oceanic and Atmospheric 

Administration (NOAA) Earth System Research Laboratory 

(ESRL) Global Monitoring Division (GMD), as part of the 

NOAA Federated Aerosol Network (NFAN; Andrews et al., 

2019). The MLO has been considered as an ideal location 

to monitor the FT background aerosol properties because of 

its geographical location (Lee et al., 1994; Ryan et al., 1997; 

Perry et al., 1999; Andrews et al., 2019). However, several 

model simulations and in situ measurements revealed that 

MLO is affected by both long-range-transported (LRT) 

aerosols, and aerosols entrained from the local planetary 

boundary layer (PBL; Mendonca, 1969; Shaw, 1980; Bodhaine 

et al., 1981; Miller, 1981; Darzi et al., 1982; Merrill et al., 

1989; Harris et al., 1990; Bodhaine et al., 1995; 1996; Ryan, 

1997; Perry et al., 1999; Takemura et al., 2002; Eck et al., 

2005; Sharma and Barnes, 2016). To investigate the FT 

background of aerosol characteristics at MLO, it is necessary 

to deconvolute the influences from LRT and the local PBL. 

In this study, we investigate the aerosol scattering and 

https://creativecommons.org/licenses/by/4.0/
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absorption properties at MLO from surface in situ 

measurements. We explore the diurnal variation of AOPs 

and determine the FT conditions (i.e., by excluding local 

influences) using Rn-222 concentrations. Seasonal variations 

and the trend of AOPs are then analyzed according to 

airmass origin. 

 

METHODS 

 

Hourly mean aerosol scattering coefficient (σsp) measured 

for total suspended particles without size cuts (January 

1974–April 2000), and for sub-10 µm particles (April 2000–

December 2015) with nephelometers at MLO, were used in 

this study. This is because the aerosol impactor system, which 

switches every 6 minutes for measuring sub-10 µm and 

submicron particles, was installed in April 2000 (Sheridan 

et al., 2001; Delene and Ogren, 2002). The aerosol absorption 

coefficient (σap) for sub-10 µm particles measured with 

filter-based absorption photometers (i.e., particle soot 

absorption photometer [PSAP] and continuous light absorption 

photometer [CLAP]) from April 2000 were analyzed. Both 

σsp and σap were measured under low relative humidity (RH; 

< 40%; Sheridan et al., 2001) and were corrected to standard 

temperature and pressure (STP; i.e., 273.15 K and 1013.25 

hPa). All σsp and σap data (Level 2) were downloaded from 

NOAA/ESRL/GMD (ftp://ftp.cmdl.noaa.gov/aerosol/mlo/). 

Detailed descriptions of instruments, data periods, data 

corrections, and associated uncertainties are listed in Table 1. 

Intensive AOPs, such as single-scattering albedo (SSA), 

scattering Å ngström exponent (SÅ E), and absorption 

Å ngström exponent (AÅ E), were derived from σsp and σap 

to examine more detailed aerosol radiative and physical 

characteristics (Delene and Ogren, 2002). In this study, SSA 

was calculated at 550 nm (Eq. (1)). Herein, σap was adjusted 

to a wavelength (λ) of 550 nm by using the 1/λ dependence 

of aerosol light absorption (van der Hulst, 1957; Bergstrom 

et al., 2002). 
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SÅE was calculated from σsp at 450 and 700 nm 

wavelengths: 
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These intensive AOPs were calculated only if σsp ≥ 1 Mm–1 

and σap ≥ 0.1 Mm–1 to avoid substantial relative uncertainties 

which were induced when σsp (σap) was close to the detection 

limit.  

Hourly mean Rn-222 volume concentrations (mBq m–3) 

recorded at MLO since 2003 enabled us to identify the time 
 

T
a

b
le

 1
. 

D
es

cr
ip

ti
o

n
s 

o
f 

ae
ro

so
l 

sc
at

te
ri

n
g

 a
n

d
 a

b
so

rp
ti

o
n

 m
ea

su
re

m
en

ts
 a

t 
th

e 
M

au
n

a 
L

o
a 

O
b

se
rv

at
o

ry
 (

M
L

O
).

 

P
ro

p
er

ti
es

 
In

st
ru

m
en

ts
 

P
er

io
d
 

W
av

el
en

g
th

 (
n

m
) 

S
iz

e 
cu

t 
C

o
rr

ec
ti

o
n

s 
C

o
m

m
en

ts
 

A
er

o
so

l 
sc

at
te

ri
n

g
 

co
ef

fi
ci

en
t 

(σ
sp

) 

M
R

I 
n

ep
h

el
o

m
et

er
 (

1
0

3
) 

1
9

7
4

.0
1
–
1

9
9

4
.0

4
 

4
5

0
, 
5

5
0

, 
7

0
0

, 
8

5
0
 

T
S

P
 

(n
o

 i
m

p
ac

to
r 

sy
st

em
) 

A
n

d
er

so
n

 a
n

d
 

O
g

re
n

 (
1

9
9

8
) 

U
n

ce
rt

ai
n

ty
 a

t 
a 

9
5

%
 

co
n

fi
d

en
ce

 i
n

te
rv

al
 i

s 

ap
p

ro
x

im
at

el
y

 8
%

 a
ft

er
 

co
rr

ec
ti

o
n

s 
ar

e 
ap

p
li

ed
 

(S
h

er
m

an
 e

t 
a

l.
, 

2
0

1
5

) 

M
sE

 n
ep

h
el

o
m

et
er

 (
1

9
8

8
) 

1
9

9
4

.0
4
–
2

0
0

0
.0

4
 

4
5

0
, 
5

5
0

, 
7

0
0
 

T
S

I 
n

ep
h

el
o

m
et

er
 (

M
o

d
el

 

3
5

6
3

) 

2
0

0
0

.0
4
–
2

0
1

5
.1

2
 

4
5

0
, 
5

5
0

, 
7

0
0
 

D
p
 <

 1
0

 µ
m

 

(i
m

p
ac

to
r 

sy
st

em
 a

p
p

li
ed

) 

A
er

o
so

l 
ab

so
rp

ti
o

n
 

co
ef

fi
ci

en
t 

(σ
ap

) 

P
ar

ti
cl

e 
so

o
t 

ab
so

rp
ti

o
n

 

p
h

o
to

m
et

er
 (

P
S

A
P

) 

2
0

0
0

.0
4
–
2

0
0

6
.0

9
 

5
5
0
 

D
p
 <

 1
0

 µ
m

 

(i
m

p
ac

to
r 

sy
st

em
 a

p
p

li
ed

) 

B
o

n
d

 e
t 

a
l.

 

(1
9
9

9
) 

ad
ju

st
ed

 

b
y

 O
g

re
n

 (
2

0
1

0
) 

M
ed

ia
n

 u
n

ce
rt

ai
n

ty
 a

t 
a 

9
5

%
 c

o
n

fi
d

en
ce

 i
n

te
rv

al
 

is
 a

p
p

ro
x

im
at

el
y
 3

3
%

 

af
te

r 
co

rr
ec

ti
o

n
s 

ar
e 

ap
p

li
ed

 (
B

o
n

d
 e

t 
a

l.
, 

1
9

9
9

; 
O

g
re

n
 e

t 
a

l.
, 
2

0
1

7
) 

 

ftp://ftp.cmdl.noaa.gov/aerosol/mlo/


 
 

 

Park et al., Aerosol and Air Quality Research, 20: 1700–1711, 2020 1702 

of the day when the observatory is least perturbed by local 

influences. Rn-222 is a naturally occurring radioactive gas 

with a relatively short half-life (3.82 days; Turekian et al., 

1977). Additionally, the main influx of Rn-222 to the 

atmosphere is attributed to the land surface, which is 2–3 

orders higher than the oceanic flux (Schery and Huang, 

2004). Rn-222 remains in a gaseous state in the atmosphere 

and is known to be removed solely by its radioactive decay 

due to its hydrophobicity and nature as a noble gas (Turekian 

et al., 1977). Therefore, Rn-222 can be considered as an ideal 

tracer for identifying terrestrial (soil) influences (Chambers 

et al., 2011, 2013, 2016). 

Airmass backward trajectories (BTs) over 10-day periods 

(240 h), calculated using the NOAA Air Resources 

Laboratory’s Hybrid Single-Particle Lagrangian Integrated 

Trajectory (HYSPLIT) model (v4.0; Draxler and Hess, 1998) 

from the location of MLO, were used to identify the source 

regions of aerosols at the MLO in FT conditions. National 

Centers for Environmental Prediction (NCEP)/National 

Center for Atmospheric Research (NCAR) reanalysis data 

(.gbl) was utilized as an input meteorological field (e.g., 

horizontal and vertical winds; Kalnay et al., 1996). Each BT 

was constructed every hour and was paired with hourly 

mean AOPs to identify the relationship between the AOPs 

and the origin of the airmass. 

The trends of σsp and σap with their significance over the 

study period were examined with the Theil-Sen slope method 

and the Mann-Kendall (MK) test. The Theil-Sen method 

calculates the slope of the possible trend with a nonparametric 

approach. It uses the median value of the calculated slopes 

from all possible pairs of data synched with time information. 

The Mann-Kendall test is a nonparametric statistical test 

which is well suited to identify small but monotonic trends. 

These are typically used because of their insensitivity to 

missing values and outliers in a time series (Mann, 1945; 

Kendall, 1975; Gilbert, 1987; Collaud Coen et al., 2013). 

 

RESULTS AND DISCUSSION 

 

The median value of σsp at 550 nm based on measurements 

collected during a 42-year period (1974–2015) was 0.94 Mm–1, 

and the median value σap at 550 nm during the period of 

2000–2015 was 0.13 Mm–1. The overall mean values of σsp and 

σap at 550 nm were 2.47 Mm–1 and 0.28 Mm–1, respectively, 

with relatively large standard deviations (4.99 Mm–1 and 

0.45 Mm–1). This implies that MLO is operating under the 

pristine conditions most of the time, but it is intermittently 

affected by highly aerosol-loaded airmasses. 

 

Diurnal Variation of AOPs and Determination of FT 

Condition 

Fig. 1 shows the diurnal variation of in situ AOPs and Rn-

222 concentrations at MLO. σsp exhibited a distinct diurnal 

variation, with increases in the afternoon hours (14–17 LST) 

and decreases during the morning hours (8–11 LST). High 

aerosol loadings, as indicated by σsp, during the afternoon 

hours, can be explained by the prevailing thermally induced 

(anabatic) winds up the flanks of Mauna Loa Mountain. 

Elevated Rn-222 concentration—which represents how 

recently the air mass was in contact with the land surface 

(Chambers et al., 2011, 2013)—is usually associated with 

the upslope wind which develops along the ridge of the 

mountain during the afternoon hours, whereas the upslope 

wind is also responsible for the influx of the PBL aerosols 

to MLO (Ryan et al., 1997). Meanwhile, no significant 

diurnal variation was observed in σap. The transport of 

scattering-dominant maritime aerosols from PBL to MLO 

by the aforementioned upslope wind is thought to be the 

reason for the elevated SSA in the afternoon, since MLO is 

located on the Big Island of Hawaii, where no particular 

industrial activities are held (DBEDT, 2019).  

Interestingly, Rn-222 concentrations typically decreased 

between approximately 8 and 11 LST, which is a transition 

period between dominant, thermally driven katabatic 

(downslope) and anabatic (upslope) winds (Ryan et al., 

1997; Chambers et al., 2013). In this study, we designated 

these hours of the day (8–11 LST) as Least Locally 

Influenced (LLI) hours to examine AOPs in FT conditions. 

A summary of the values of σsp and σap over 24-h and LLI-h 

periods is listed in Table 2. Both daily mean and median σsp 

values were approximately 34% and 32% higher than those 

of the LLI hours, respectively, whereas the σap values 

corresponding to the 24-h and LLI-h periods were not 

significantly different. Compared to the daily mean, the 

slightly lower SSA (0.87 ± 0.12) and higher SÅ E (1.35 ± 

1.24) values during the LLI h (see the white dashed boxes 

in Fig. 1(b)) suggest that the aerosols in FT conditions are 

more absorbing and slightly larger.  

 

Seasonal Variation of FT Aerosols 

Air Mass Origins 

Fig. 2 shows the aerosol optical depth (550 nm) from 

13-year Moderate Resolution Imaging Spectroradiometer 

(MODIS) measurements with selected air mass source 

regions, and the monthly variation of percentages of air 

mass origins estimated based on BTs constructed over 10-day 

periods. The largest fraction of airmasses that reached MLO 

was from the Pacific Ocean (PO; 43.5%). Approximately 

24.7% and 13.1% of airmasses originated from Northeast 

Asia (NE Asia) and Southeast Asia (SE Asia), respectively, 

the largest emission sources of natural (dust, biomass 

burning) and anthropogenic aerosols, as indicated by the 

MODIS-derived AOD. Several studies reported that aerosol 

properties at MLO were largely affected by Asian outflow 

(Bodhaine et al., 1981; Bodhaine, 1995; 1996; Perry et al., 

1999; Eck et al., 2005). It is noteworthy that the AOPs at 

MLO were not much influenced by airmasses that originated 

from other regions (18.7%; Central America, continents in 

North Pacific Ocean, North America and continents in the 

Southern Hemisphere).  

MLO is more frequently influenced by Asian airmasses 

(> 50%) from December to April due to the southward shift 

of the Intertropical Convergence Zone (ITCZ; Henderson-

Sellers and Robinson, 1991; Schneider et al., 2014). By 

contrast, airmasses from Asia substantially decrease during 

June–September due to weakening FT westerlies along the 

Hawaiian Islands by the northward shift of the ITCZ. Instead, 

airmasses from North and Central America increase, even  
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Fig. 1. Diurnal variation of the aerosol optical properties (AOPs; σsp, σap, SÅ E and SSA) and 222Rn concentration at the 

Mauna Loa Observatory (MLO). (a) Box-and-whisker plot, whereby the whiskers represent the 10th and 90th percentiles, and 

the horizontal lines in boxes represent the 25th, 50th, and 75th percentiles of the hourly values. The mean values are denoted 

with red dots. (b) Annual cycle of the diurnal variability of AOPs. Variables are normalized with the maximum hourly 

average value of the month. The least locally influenced (LLI) period (8–11 LST) is denoted by the white dotted line. 

 

Table 2. Comparison of aerosol scattering (σsp) and absorption (σap) coefficients over 24-h and least locally influenced (LLI)-h 

periods. 

 24 h (0–24 LST)a LLI h (8–11 LST) 

Aerosol scattering coefficient 

(550 nm, Mm–1) 

Mean 2.47 1.85 

Standard deviation 4.99 3.43 

MADb from mean 2.48 1.87 

Median 0.94 0.71 

MAD from median 2.03 1.51 

Aerosol absorption coefficient 

(550 nm, Mm–1) 

Mean 0.28 0.29 

Standard deviation 0.45 0.42 

MAD from mean 0.26 0.26 

Median 0.13 0.14 

MAD from median 0.22 0.22 
a Times are in Hawaiian local standard time (LST = Coordinated Universal Time [UTC] – 10 h). 
b MAD: Mean absolute deviation. 
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Fig. 2. (a) Source region designation for quantification of their contributions on the free troposphere (FT) σsp and σap values 

measured at the MLO. The background color contour is a composite of monthly averaged Moderate Resolution Imaging 

Spectroradiometer (MODIS) Aqua dark target aerosol optical depth (AOD) from 2003 to 2015 (Level 3, 1 × 1 resolution). 

(b) Monthly variations of air mass source regions. Monthly frequencies of air masses from the Pacific Ocean (PO; blue), 

Northeast Asia (NE Asia; red), Southeast Asia (SE Asia; green), and other regions (OR; gray). 

 

though the MLO is typically located above the trade wind 

inversion (TWI) layer. This is attributed to the weakened 

TWI due to the increased thermal instability together with 

an updraft induced from large-scale circulation (Hastenrath, 

1991).  

 

Aerosol Optical Properties 

Monthly variations of σsp, σap, SÅ E, and SSA are shown 

in Fig. 3. The distinct springtime peaks of σsp and σap are 

apparent in both the 24-h and LLI-h periods. Both the σsp and 

σap values at 550 nm during the spring months (March–May) 

were 4.52 ± 7.35 Mm–1 and 0.49 ± 0.59 Mm–1, respectively. 

These were almost twice as large as the annual mean (σsp: 2.47 

± 4.99 Mm–1; σap: 0.28 ± 0.45 Mm–1). Similarly, the values of 

σsp and σap in FT conditions (i.e., during LLI hours) during 

the spring exhibited values approximately twice as large 

(3.55 ± 4.79 Mm–1 and 0.49 ± 0.52 Mm–1, respectively) as 

their annual mean values (σsp: 1.85 ± 3.43 Mm–1; σap: 0.29 

± 0.42 Mm–1). Enhanced σsp and σap values in FT conditions 

during the spring can be explained by the FT transport of 

aerosols, particularly from the Asian continent. 

SÅ E was relatively low in the spring compared with 

summer and autumn. This can be explained by the relatively 

coarse dust particles from NE Asia. Monthly mean SSA at 

550 nm ranged between 0.83 and 0.88 from October to April, 

while it remained > 0.9 during the summer. Observations of 

SSA smaller than 0.8 during the autumn can be attributed to 

preferential scavenging of light-scattering aerosols by clouds, 

fog and/or precipitation at low-σsp and -σap conditions 

(Andrews et al., 2011). Frequent transport of light-absorbing 

aerosols from NE and SE Asia is responsible for low SSA 

values from January to April.  

Figs. 4 and 5 show the monthly variations of σsp and σap 

in FT conditions according to the airmass origin, and the 

contributions of each airmass source region on σsp and σap. 

We note that the contribution of the airmass origin (Cσi,j) to 

σsp (σap) was normalized for the ith source region and jth 

month: 
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i j i j
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where N is the number of events. Elevated σsp and σap values 

were apparent in the spring with prevailing airmass 

transportation from NE and SE Asia. It should be noted that 

monthly variations of σsp and σap do not always coincide 

with the frequency of airmass source regions. Compared to 

the spring, more airmasses from NE and SE Asia reached 

the MLO in the winter. However, Asian airmasses contribute 

more to elevated σsp (σap) values in the spring. For example, 

the contributions of transported aerosols over long ranges 

from NE Asia (i.e., pollution and Asian dust particles) and 

from SE Asia (i.e., biomass burning aerosols which is listed  
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Fig. 3. Monthly variation of AOPs (σsp, σap, SÅ E and SSA) 

observed at the MLO. The whiskers represent the 10th and 

90th percentiles, and the horizontal lines in boxes represent 

the 25th, 50th, and 75th percentiles of monthly data. Monthly 

averages are denoted as dots. Percentiles of 24-h measurements 

are shown in red, while percentiles of LLI-h data are shown 

in blue. 

 

in parenthesis) in March were estimated to be 45% (26%) 

for σsp and 40% (25%) for σap. This temporal discrepancy 

between AOPs and the frequency of airmass impacting MLO 

is attributed to atmospheric conditions at the source regions 

as discussed below.  

Although pollution emission is generally maximized during 

the winter in NE Asia, an increased atmospheric stability 

over NE Asia during the wintertime due to the development 

of the Siberian High inhibits the entrainment of aerosols 

from the boundary layer to FT (Cai et al., 2017). However, 

more favorable atmospheric conditions for the entrainment 

to FT occur in the spring, including the more frequent 

occurrence of frontal lifting (Bey et al., 2001). In SE Asia, 

large-scale biomass burning frequently occurs from January 

to April. These biomass burning aerosols can be entrained 

from a boundary layer to FT by atmospheric convection, and 

then further transported to downwind regions (Garreaud, 

2001; Liu et al., 2003; Lee et al., 2017; Nam et al., 2018; 

Park et al., 2019). Airmasses in the mid-troposphere tend to 

move westward from the late spring due to the influences 

from the Tibetan High (Liu et al., 2003), so the transport of 

aerosols from SE Asia to MLO is subsequently decreased.  

Interestingly, airmasses which travel only within the PO 

during the spring yield higher σsp and σap values compared 

to other months (Fig. 4). This is because the Asian aerosols, 

which are extensively distributed over the Pacific, can also 

reach MLO. More investigations on aerosol loadings and 

associated aerosol optical and radiative properties over 

broad Pacific regions during the spring are thus needed 

(Brock et al., 2019; Katich et al., 2018).  

 

Systematic Relationships Among AOPs 

We investigated the relationships among AOPs for three 

major contributing source regions (PO, NE Asia, and SE 

Asia) to explore the aerosol characteristics, such as their 

types, sources, and processes (Andrews et al., 2011; Sherman 

et al., 2015; Schmeisser et al., 2017). Statistical comparisons 

of σsp and σap for three source regions are listed in Table 3. 

The highest σsp and σap values were apparent in the NE 

Asian airmass, whereas the PO airmass yielded the lowest 

values.  

As σsp increases, σap also increases in all three regions 

(Fig. 6(a)). The higher slope between σsp and σap for the 

airmass from SE Asia suggests that the aerosols from SE 

Asia have a lower SSA than others, as shown in Fig. 6(b). 

Similarly, SSA also gradually increases as σsp increases. 

Selective scavenging of larger scattering aerosols is possible 

given that the removal of larger particles generally result in 

low aerosol concentration with higher absorption parts over 

the total extinction (Sellegri et al., 2003; Andrews et al., 

2011). Contrary to the PO and SE Asia, SÅ E gradually 

decreases with increasing σsp for the airmass from NE Asia 

(Fig. 6(c)). This relationship can be explained by the 

transport of coarse dust particles from arid and desert areas 

in NE Asia (Lee et al., 2012). An increasing SÅ E with 

increasing σsp values for SE Asian airmasses is likely attributed 

to the fine-mode biomass burning aerosols (Toledano et al., 

2007; Andrews et al., 2011; Schmeisser et al., 2017). SÅ E 

and AÅ E between NE and SE Asia are similar, but slightly 

higher SÅ E and lower AÅ E were observed in PO airmass 

(not shown). 

 

Inter-annual Trend of Aerosol Scattering and Absorption 

Coefficients 

The trends of σsp and σap in FT conditions were calculated 

for three major source regions (NE Asia, SE Asia, and PO). 

Fig. 7(a) shows the time series of the annual mean σsp and 

σap values over the study period. A linear trend and its 

significance calculated with the Theil-Sen and Mann-Kendall 

methods is presented in Fig. 7(b). The value of σsp increased 

by approximately +1.89% per year during the period of 

1974–2015. The highest increasing trend of σsp since 1974 

appeared in the PO air mass (+2.18% year–1), followed by 

NE Asia (+2.09% year–1) and SE Asia (+1.22% year–1). 

However, the magnitude of the increasing trend adhered to 

the order of a) NE Asia (+0.51 Mm–1 decade–1), b) PO 

(+0.32 Mm–1 decade–1), and c) SE Asia (+0.27 Mm–1 decade–1). 
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Fig. 4. Monthly variations of σsp and σap for the air masses from the PO, NE Asia, and SE Asia regions. Cross lines in boxes 

represent the 25th, 50th, and 75th percentiles, and whiskers represent the 10th and 90th percentiles. Mean values of each month 

are denoted by asterisks. Data for σsp and σap from the period of 2000–2015 are utilized. 

 

 

Fig. 5. Monthly variation of source region contributions on σsp and σap at the MLO. PO, NE Asia, SE Asia, and other regions 

(OR) are denoted with blue, red, green, and gray colors, respectively. 
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Table 3. Comparison of aerosol scattering and absorption coefficients (550 nm) among different source regions. 

Properties Pacific Ocean Northeast Asia Southeast Asia Other regionsa 

Aerosol scattering 

coefficient  

(550 nm, Mm–1) 

Mean 1.457 2.456 2.243 1.828 

Median 0.64 0.93 0.83 0.68 

Standard error 0.034 0.064 0.082 0.060 

Aerosol absorption 

coefficient 

(550 nm, Mm–1) 

Mean 0.229 0.358 0.352 0.273 

Median 0.126 0.187 0.161 0.012 

Standard error 0.0078 0.0133 0.0171 0.015 
a Includes North America, Central America, Southern Hemispheric continents and North Pacific Continents. 

 

 

Fig. 6. Systematic relationship between the FT AOPs at the MLO analyzed according to the source region. Red, green, and 

blue colors respectively indicate the NE Asia, SE Asia, and PO regions. (a–c) Systematic relations among σsp and other 

AOPs, such as σap, single-scattering albedo (SSA), and scattering Å ngström exponent (SÅ E). The average values of variables 

correspond to each σsp bin, which is divided in 2 Mm–1 intervals, are denoted by filled diamonds with the respective colors 

used for each source region. Horizontal lines in boxes represent standard errors. Bins with more than 20 valid measurements 

are analyzed. Linear regression lines over each source region are denoted with dotted lines using the respective colors for 

the studied regions. 

 

 

Fig. 7. (a) Time series of annual average σsp and σap values according to the source region. Each source region is depicted in 

blue (PO), red (NE Asia), and green (SE Asia) colors. (b) Trends of σsp and σap values according to the air mass origins. 

Trends and their statistical significances are calculated with the Theil-Sen slope method and the Mann-Kendall test, 

respectively. Significant trends at 99% (95%) confidence levels are denoted as circles (triangles), while crosses denote 

insignificant trends at a 95% confidence level. 
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These first two trends (a, b) are significant at a 99% 

confidence level, and the last trend (c) at a 95% confidence. 

Both the σsp and σap values yield positive trends in all three 

regions during the period of 2000–2015, but both are 

insignificant at a 95% confidence level. 

Overall, σsp and σap at MLO is experiencing greater 

influence from LRT aerosol plumes. Especially, aerosol 

transport from NE Asia, associated with increasing 

anthropogenic emission due to the economic growth (and 

with some natural variation) was the most prominent 

contributing source for the increasing trend of the extensive 

AOPs (Liu et al., 2003; Guo et al., 2011; Kim et al., 2011; 

Chen and Wang, 2015). The positive trend in PO airmass is 

attributable to enhanced outflow of pollution aerosols from 

NE Asia, which finally reaches MLO. This is supported by 

the concurrent peak of σsp and σap found during boreal spring 

when the source of air mass is PO, while the only possible 

FT source of aerosols are FT transport originating from NE 

and SE Asia.  

 

CONCLUSIONS 

 

We investigated diurnal, monthly, and inter-annual 

variations in the aerosol scattering coefficient (σsp; 1974–

2015) and the absorption coefficient (σap; 2000–2015) at the 

MLO using surface in situ measurements. The major 

findings of this study are summarized below: 

• The value of σsp decreased during the hours of 8–11 LST 

(1.85 ± 3.43 Mm–1 at 550 nm) but increased during the 

afternoon (3.72 ± 7.63 Mm–1 at 550 nm; 14–17 LST) due 

to the development of upslope boundary layer winds. No 

distinct diurnal variation was observed in σap. 

• The highest σsp and σap values appeared when the air 

masses originated in NE Asia (σsp: 2.46 Mm–1; σap: 

0.36 Mm–1), followed by SE Asia (σsp: 2.24 Mm–1; σap: 

0.35 Mm–1) and the PO (σsp: 1.46 Mm–1; σap: 0.23 Mm–1). 

• NE Asia and SE Asia were the most prominent sources 

of air masses during the winter, but their contributions 

to σsp and σap values peaked during the spring. 

• A distinct increase in the values of σsp and σap during the 

spring under FT conditions (8–11 LST) was attributed to 

long-range-transported dust and pollution aerosols from 

NE Asia and biomass burning aerosols from SE Asia. 

• The largest increasing trend for σsp after 1974 was 

attributed to air masses from the PO (+2.18% year–1), 

followed by NE Asia (+2.09% year–1) and SE Asia 

(+1.22% year–1). However, the increasing trend’s 

magnitude adhered to the order of a) NE Asia (+0.51 

Mm–1 decade–1), b) the PO (+0.32 Mm–1 decade–1), and 

c) SE Asia (+0.27 Mm–1 decade–1). Both the σsp and σap 

values showed positive trends for all three regions over the 

period of 2000–2015, but these values were insignificant 

at a 95% confidence level. 

Long-term, continuous climate-relevant aerosol 

measurements at the MLO are needed in the future to better 

estimate the direct aerosol radiative effects related to emissions 

from Asia. In particular, simultaneous measurements of 

aerosol chemical components will be very helpful in 

identifying the aerosol sources.  
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